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This paper is concerned with the stability and precision of transient implicit finite difference 
algorithms. The test problem is the Burgers equation The influence of space discretisation and 
initial values is studied. Linear analysis provides incomplete stability conditions for both con- 
tinuous and weak solutions and we derive a simple criterion of “augmented” stability taking 
into account the non-linearity of the problem. The real stability limits appear to be a com- 
bination of the linear stability analysis criterion and of this “augmented” stability criterion. 
0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Recent progress in the numerical solution of the Euler equations has been accom- 
plished by the development of noniterative implicit methods. These methods are 
attractive because they are more stable and generally more efficient than explicit 
schemes (see Refs. [l-7] for some recent contributions to this field). 

Many aspects of these methods are still the subject of intensive research. One 
important problem is that of the spatial differencing scheme. Recent activity has 
concentrated on the development of schemes which avoid spurious oscillations and 
allow a rapid rate of convergence to the steady state. An interesting class of such 
schemes is known as the total variation diminishing (TVD) algorithms (see, for 
example, Yee, Warming, and Harten [ 1 I). 

Another point of concern is that of the accuracy of the transient solution. Indeed 
most of the implicit methods, although based on time-dependent formulations, are 
only used to determine the steady state solution of the dynamic equations. In these 
circumstances the time steps are merely used as relaxation steps in an iterative 
search of the steady state solution. However, in many problems transient accuracy 
is also of importance. For example, in problems of turbulent reactive flows, quan- 
tities like the turbulent kinetic energy, the dissipation, and the species mass frac- 
tions must remain positive at all times. Now if in the course of the calculation 
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spurious ripples are allowed to develop then in many cases the computation rapidly 
diverges. 

In the present paper we wish to contribute to the analysis of these two aspects. 
For simplicity we consider as a test problem the Burgers equation under various 
initial conditions and we center the analysis on the linearized block implicit (L 
method of McDonald and Briley [S, 61. We also restrict the study to cases where 
the boundary conditions have no influence. This is achieved by considering the 
semi-infinite half-space 0 < t < ~0, - co < s < + cc and stopping the calculation 
when the solution reaches the boundaries of the computational domain. 

Our scope is to examine the conditions under which schemes of the LBI type 
provide stable, ripple-free, and accurate solutions. We shall demonstrate that an 
examination of the solution after the first time step provides interesting clues to 
possible non-linear growth of spurious oscillations. In .the present case this met 
may be used to enhance the stability and precision of the time-dependent 
calculation. 

Section 2”describes the test problem and the LBI type difference schemes under 
examination. The results of linear stability analysis are presented in Section 3. A 
non-linear analysis of the growth of spurious oscillations is carried out in Section 4 
by first considering shock-free solutions of the Burgers equation. Section 5 concerns 
solutions with shocks. A non-linear criterion for transient accuracy is put forward 
for such cases. 

2. FORMULATION OF THE TEST PROBLEM AND FINITE DIFFERENCE SCHEMES 

We use as a test problem the Burgers equation 

where 

in the infinite domain -co <x < + co, t 3 0. 
The Burgers equation constitutes a good model for the evolution of non-linear 

waves in a dissipative medium and it has many features in common with the 
Navier-Stokes equations. (See Karpman [ 111 for a complete analysis of Burgers 
equation properties.) The term va*u/dx* is associated with the viscous dissipation 
effect and will be neglected here because we are essentially interested in the non- 
linear phenomena associated with &u/ax. 

As initial conditions we consider the following cases (Fig. 1): 

(a) u(x, 0) = 0 for x < 0; 24(x, 0) = ucI for x 3 0; 

(b) u(x, O)=u, for x<O; u(x, 0)=0 for x30. 
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FIG. 1. Initial conditions and analytical solutions for the Burgers equation: (a) Expansion fan, (b) 
shock. 

The solutions corresponding to these initial conditions are shown in Fig. 1. Con- 
dition (a) generates an expansion fan: u(x, f) = 0 for x < 0, u(x, t) = x/t for 
O<x<uu,t, u(x, t)=u, for x>u,t. 

Condition (b) produces a shock propagating at speed 2442: u(x, t) = u0 for 
x -=c u. t/2, u(x, t) = 0 for x 3 u0 t/2. 

In the previous set of initial conditions, u,, is a characteristic value of the field U. 
It is then convenient to define the dimensionless field U = u/u0 and work with the 
modified equation 

;+u,.L(u)=o, where L(U) = lJ.g. 

Finite Difference Methods 

We restrict the present study to the linearized block implicit scheme of Briley and 
McDonald [S, 61. 

In accord with these references, Eq. (2) is first replaced by a discrete form with 
respect to time 

n+l u - U” 

At = -P%J4u”+‘)- (1 -p) uOL(U”), 

where j3 is a constant parameter (0 < /3 d 1). Then the nonlinear term L( U” + ’ ) is 
expanded in Taylor series around U”. For this we let 

L(U) = uu, = M( u, U,). 

Then 

L(U=+l)zL(U’*)+ g “.(un+‘-u”)+(-&)n.(u:+‘-u:). 
i > x 

Here BM/aU = U, and dMJdU, = U and the previous expansion becomes 

L(u”+‘)-L(u”)+(u,)“(u”+‘- uy+ uyU:+‘- Q). (4) 
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We now introduce the difference between the solutions at time steps n + 1 and n, 
* - 

n+l- (rJ”fl - U”. With this definition expression (4) becomes 

L(un+l)lL(U”)+-$un$P+i). 

Substituting this approximation in Eq. (3) yields the “d’elta” form 

[l +f&,AtG(U”)] t+knfl= -u,ArL(U”); 

where 

and 

To discretize the spatial operator ii/ax appearing in L and G we use a linear com- 
bination of the classical forward and backward operators. Thus 

a 
i") 
z ,=~LaD++(*-U)D-]F.+jrr-~)o(A*)+O(Ax'). (71 

i ’ 

where D,F,=F,,,- F, and D-F,=F,-Fip,. 
The values CYI = 0, l/2, and 1 correspond respectively to backward, centered, and 

forward differencing. 
Substitution of Eq. (7) in the delta form (5) yields a tridiagonal system of 

equations 

where 

ai=PA(l -a) uy_ I 

bi=1+pA(l-2U)U; 

ci= -pM-Jy, 1 

d,= -; (a[(U;+,)2-(U;)2]+(1-a)[(U;)“-(U;- ,)‘I> 

and 

2 = u. At/Ax. 
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3. LINEAR STABILITY ANALYSIS 

To obtain the linear stability conditions we apply the Von Neumann method to 
the difference scheme defined by expression (8). In this method the non-linear 
operators are linearized and the solution is assumed to be spatially periodic and of 
the form 

U: = v” exp(j(ikdx)) for i = O,..., N + 1, (9) 

where j2= -1. 
The amplification factor defined by 5” = v”+ ‘/vN is determined by inserting 

expression (9) in the linearized difference scheme (8). 
Linear stability is assured if ilr”ll d 1. Straightforward calculations yield 

where 8= kdx. It is then possible to show that stability is obtained if the 
parameters IX, /?, and I satisfy the sets of inequalities 

B<1, a<$, /?<(1-2a)/(l-2P) (11) 

or 

4. AUGMENTED STABILITY OF SHOCK-FREE SOLUTIONS 

It is well known that the standard linear stability analysis only provides 
necessary conditions for the stability of a finite difference approximation of a non- 
linear equation. Linear analysis alone does not yield clues to the possible growth 
and development of oscillations in the numerical solution. Such oscillations may 
give rise to important difficulties in many circumstances. It is therefore interesting 
to augment the stability criterion with additional conditions ensuring that 
oscillations do not arise. These conditions may be obtained in various ways. A sim- 
ple method consists of examining the numerical solution after a single time step. 
Clearly, this strategy of suppressing oscillations after a single step does not provide 
a sufficient condition for stability or accuracy. A necessary condition is obtained 
which may only be used in combination with the classical linear stability results to 
improve the stability and precision of the calculation. The main difference between 
the classical linear analysis and the present approach is that the former isolates a 
single Fourier mode and considers its growth or decay while the latter is concerned 
with the complete solution, as it evolves after one time step. It is then possible to 
determine the conditions under which this solution remains free of ripples or 
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FIG. 2. Expansion fan. Numerical solution after six time steps. CI = 0.5, p = 0.5, CFL = 2, Al = 0.04 s. 
t = 0.24 s. 

overshoot (and undershoot) values, and in this sense the criterion obtained is non- 
linear. Now, if the initial conditions have a simple form it is most convenient to 
determine the solution after the first time step. To illustrate this approach let us 
consider the initial condition (a) corresponding to an expanding fan. At t = 0, the 
discrete values of U’ are Up = 0 for i = 0 ,..., M- 1 and Up = 1 for i = M ,..., N + 1. 

It is then a simple matter (see Appendix A) to directly calculate the solution U! 
after the first time step. This solution remains bounded by 0 and 1 and thus does 
not undershoot or overshoot only if the following two conditions are satisfied: 

a=0 

J,<2/(1-2p) forO<p<$. (12) 

A smooth solution is obtained if the spatial differencing is upwind and if the CFL 
number J. is less than 2/( 1 - 28) for 0 d fl< $. This basic result is illustrated in 
Figs. 2,4, and 5. The numerical solution obtained after 6 time steps with SI = 0.5 
(central differencing in space) is displayed in Fig. 2. A strong oscillation develops 
around the origin of the expansion fan leading to divergence of the calculations 
after 10 time steps. No choice of fl or CFL number 1 is able to stabilize t 
calculations if M differs from zero (i.e., if the spatial differencing is not fully upwind). 
For CI # 0 the negative value generated at the left of the expansion fan goes to -- cc, 
after a few time steps. As we shall see later this situation does not prevail when the 
initial conditions produce a moving shock. In that case a stable undershoot may be 
obtained. 

Now let us set CI = 0 (upwind differencing) and analyse the behavior of the 

cFL;m;. 
0.1 0.2 0.3 0.4 0.5 

FIG. 3. Stability regions in the case of an expansion fan. M =O. Shaded area, observed stability 
region; solid line, result of non-linear analysis (Eq. (12)); dotted line, result of linear theory (Eq. (1: )). 
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FIG. 4. Expansion fan. Numerical solution at t = 0.48 s, CL =O, p = 0.3, CFL =4, dt =0.08 s. Con- 
dition (12) is satisfied. 

numerical scheme as a function of the CFL number A and parameter /I. The 
stability limit obtained from the linear analysis of Section 3 and the criterion (11) 
are plotted in Fig. 3. The numerical scheme is unconditionaly stable for j? 2 1. It is 
linearly stable for /? = 0 (explicit scheme) if the CFL number i does not exceed 1. 
Now if 0 <p < 4, the calculations remain stable for CFL numbers ,J bounded by 
2/( 1 - 2/?) as predicted by criterion (12). This limit exceeds that obtained from the 
linear stability analysis. This interesting aspect is illustrated in Figs. 4 and 5, which 
respectively correspond to couples of parameters (p = 0.3, A= 4) and (p = 0.3, 
J. = 6), points A and B of Fig. 3. As expected the calculation is stable for the first set 
of parameters and unstable for the second. 

When stability is assured it is still possible to obtain further limitations of the 
CFL number by considering the precision of the numerical scheme. At time t = ndt, 
a measure of the numerical error is provided by 

(13) 

where U” is the calculated solution and U the exact solution. This error is plotted in 
Fig. 6 with respect to /I for a given time t and different values of the CFL number 1. 
It is interesting to note that schemes using p = 0.3 are the most precise. However, 
this choice of /l implies a CFL limitation of 5. Clearly the large CFL numbers used 
in many time-marching calculations of steady state flows do not assure transient 
accuracy. McDonald and Briley [IS] indicate that CFL numbers of the order of lo3 

1 ,- 

/’ 
/’ 

z 
0 

FIG. 5. Expansion fan. Numerical solution at t = 0.48 s, cx = 0, b = 0.3, CFL = 6, dt =0.12 s. Con- 
dition (12) is not satisfied. 
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FIG. 6. Expansion fan. Effect of the CFL number on transient accuracy. cx = 0. t =0.48 s, 
U” = numerical solution, U = exact solution. l:CFL=l; 2:CFL=2: 3:CFL=4; 4:CFL=S: 
5: CFL = 10. 

may be used to obtain the steady state solution of the gas dynamic equations but 
they note that transient accuracy is not achieved when 2 exceeds 2.2 for B = 1, a = i. 

In the case of Burgers equation a = 0, p = 0.3, 1= 4 appears to be a good choice 
for the determination of shock-free solutions. 

5. AUGMENTED STABILITY OF SOLUTIONS CONTAINING SHOCKS 

The results of the linear stability analysis of Section 3 may be used in the present 
case. However, it is well known that non-linear instabilities may develop even if the 
linear stability criteria are satisfied (see, for example, Yee et al. [l] ). As a con- 
sequence it is important to obtain additional information on the possible growth of 
oscillations. This may be achieved by examining the discrete solution obtained after 
the first time step. This calculation, performed in Appendix B, indicates that the 
solution remains bounded by 0 and 1 if 

The condition i <2 is equivalent to the Von Neumann-Richtmeyer condition 
u, At/Ax < 1, where u, is the shock propagation speed which here is u, = u,/2 [S]. 

The linear stability limit and the non-linear condition (14) are plotted in Fig. 7. 
Clearly, condition (14) sets a strong limitation on the CFL number 2. 

The previous discussion is well illustrated by .the following numerical 
calculations. We first consider a case where M = 0.5. In this circumstance the 
solution is expected to oscillate and this is indeed observed (see Figs. 8 and 9). The 
oscillations remains bounded if the CFL number is below the linear stability limit 
(Eqs. (10) and (11)). This behavior is illustrated in Fig. 8 with a typical result of 
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FIG. 7. Stability regions for shock calculations. Shaded area, observed stability region; solid line, 
result of linear theory (Eq. (11)); dotted line, result of non-linear analysis (Eq. (14)). 

calculation corresponding to centered difference (a = OS), a CFL number A = 2, and 
a parameter p = 0.8. Otherwise the oscillation grows without bound as exemplified 
in Fig. 9 (a = 0.5, CFL = 2, /? = 0.3) with a result obtained a few time steps before 
complete divergence of the calculation. 

These results provide some insight on the coupling between linear and non-linear 
instability modes. For a CFL number satisfying the linear stability limit an 
oscillation is generated by a non-zero value of the spatial differencing parameter a. 
The amplitude of this oscillation first grows and then reaches a bounded value 
typical of certain non-linear oscillations. Now, if the linear stability condition is not 
satisfied, the oscillation is constantly amplified and cannot reach a bounded 
amplitude. This may explain why schemes using centered space differencing 
(a = 0.5) can be stabilized with small artificial viscosity terms. For such schemes 
and sufficiently small CFL numbers only finite amplitude non-linear oscillations are 
generated and these may be diminished or dissipated with artificial viscosity. 

1 

B 0 
0 

FIG. 8. Evolution of oscillations in shock calculations. Stable overshooting. (Condition (11) is 
satisfied.) a=OS, /I=O.S, CFL=2, At=O.O4s, t=0.48s. 
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FIG. 9. Evolution of oscillations in shock calculations. Unstable overshooting. (Condition (11) is not 
satisfied.) x=0.5, p=O.3, CFL=2, dt=O.O4s, t=0.2s. 

When a = 0, corresponding to upwind differencing, linear stability is assured for 
values of the CFL number satisfying (11) with CI = 0; 

A<l/(l-2/g, (15) 

and the solution remains ‘bounded by 0 and 1 if in addition i 6 2. For values of p 
and 1 taken in the shaded area of Fig. 7, the solution is stable and smooth. This 
area corresponds to the inequalities (15) and (14), respectively. The linear stability 
region is restricted here by the non-linear criterion. If conditions (14) and (15) are 
both satisfied, i.e., if fl and 1 belong to the shaded area, the stability of the finite dif- 
ference scheme is assured for weak solutions. In region A, where condition (1.5) is 
not satisfied, and in region B, where condition (14) is not satisfied, the finite dif- 
ference schemes are unstable. This result differs from that obtained in the case of the 
expansion fan (Section 4). There we found that implicit schemes enhance the linear 
and non-linear stability of the calculation. For a shock however the non-linear 
criterion (14) sets a limit to the gain, which may be ‘obtained by increasing the 
value of /3. For /I larger than 0.25 the CFL number must be kept less than or equal 
to 2 (Fig. 7). 

Figures 10 and 11 illustrate the previous discussion. The values of #I and J belong 
to the shaded area displayed in Fig. 7. The shock width is a function of /I and a. 
High values of p produce wide transitions layers. Sharp shocks are obtained for a 
CFL number of 2. The width of the shock increases as the CFL number 1 is 
decreased below 2. 

FIG. 10. 

581/62/2-3 

Influence of CFL number on shock width. I = 0, p = 1, t = 0.52 s, Al = 0.03 s, CFL = i.5. 
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FIG. 11. Influence of CFL number on shock width. c1= 0, /3 = 1, f = 0.52 s, At = 0.04 s, CFL = 2. 

Starting from Eq. (BlO) of Appendix B it is easy to verify that the case ,? = 2 
corresponds to a translation of the shock discontinuity without modification. The 
shock is followed in a “quasi-Langrangian” way from one node to the next for each 
time step. The shock speed is in this case u, = u,/2 and the transition layer is then 
reduced to a single cell. This situation is exceptional and cannot be expected to 
occur in more complicated calculations. A significant result of this analysis is that 
the growth of ripples in calculations involving shocks is strongly dependent on the 
spatial differencing and CFL number. Similar conclusions are obtained from 
numerical simulations of inviscid nozzle flows. 

CONCLUSION 

The present analysis has been concerned with the Burgers equation and its 
solution with linearized block implicit-type schemes. The following results have 
been obtained: 

(1) If no artificial viscosity is introduced in the finite difference scheme then any 
spatial differencing except upwind differencing (a = 0) induces spurious oscillations 
in the neighborhood of discontinuities. Whether these oscillations grow in time 
depends on the existence of shocks and on the CFL number. A stable ripple may 
arise in shock calculations if the CFL number is less than a certain limit function of 
the time centering parameter p (Eqs. (10) and (11)) and always less than 2. In the 
case of shock-free solutions the oscillations always grow without bound if the dif- 
ferencing scheme is not upwind (i.e., if a # 0). Therefore schemes corresponding to 
a # 0 (for example, the centered scheme a = 0.5 of McDonald and Briley) must be 
stabilized by explicit artificial viscosity [S, 91. 

(2) Upwind differencing schemes do not require explicit artificial viscosity. The 
maximum CFL number is 2 for shock calculations and a function of p for con- 
tinuous solutions (Eq. (12)). Unconditional stability and the absence of spurious 
ripples are obtained for B > 4. However, the best transient accuracy is found for 
p = 0.3 and CFL = 4. 

(3) It is well known that upwind differencing schemes have a good behavior in 
computations involving discontinuities [2, 7, lo]. This study shows that they have 
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the best behavior among first-order or centered (second-order) differencing 
schemes. Furthermore they provide the greatest precision and allow the use of the 
highest CFL numbers if they are used in an implicit code with an adequate time 
centering. 

It must be noticed that results concerning the Burgers equation are not directly 
applicable to more complicated systems like the Navier-Stokes equations. 
However, these equations have some common features and the Burgers equation 
constitutes a pertinent model problem. The calculations performed in this paper 
indicate that the simple non-linear criterion obtained by examining the solution 
after a single time step may be used to augment the stability of the scheme. In fact 
the solution obtained after one time step contains indications of the behavior of the 
solution for later times. No rigorous demonstration of this property may be given 
at present. However, as suggested by a reviewer it might be possible to study the 
non-linear interaction of elementary perturbations and actually link the analysis 

performed in this paper to the usual linear Fourier analysis which assumes that no 
interactions take place. This approach may rely, for example, on the recent con- 
tributions of Briggs et al. [13] and Hunter and Keller [I4]. 

APPENDIX A 

We consider as initial conditions those corresponding to an expansion fan and 
write system (8) after the first time step 

t/l;=0 for OdibM-2 (‘421 

$hp 1 + p”alj~ = -h/2 (AZ) 

[l+j/%(l-2c()] $~+/Ucl$~+,= -i(l-fX)/Z (A31 

-pn(l-a)~f_,+[l+p~(l-2C1)]~!+Pila~!+,=o forM+l<i<N (A4) 

ti a+, =o. (As) 

In these equations tjf represents the increment in the difference solution after the 
first time step: $! = U! - Up. To solve the previous set of equations we use the 
associated sequence gi defined by 

for i=M-1 to N 

4 -0 N-Cl- 2 (A? 

where a = fin( 1 - LX), b = 1 + /?A( 1 - 2a), and c = PAa. Equations (A6), (A7) are for- 
mally equivalent to (A4), (A5). Now, the sequence #j is completely determined by 
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Eq. (A6) and two additional conditions. One condition is given by (A7) while the 
second may consist of 

As a consequence 

9i=*! for i=M to N+ 1. 

Then, $M ~ I may be determined from Eq. (A6) written for i = M. 

4M--l=(b9M++c‘44+1)/~ 

=WL+4i4+1)/~ 

and Eq. (A3) then yields 

-/I(1 -a)/2 1 
#M-l= pn(l-a) =-jj. 

Now each term of the sequence may be written in the form 

q$= k,r; + k,r;, 

where ri, r2 are the roots of the characteristic equation 

cr2+b -a=O. 

(A9) 

(A101 

The product of the two roots 

r1r2= -a/c= -(l-&)/E 

is negative while the sum of the two roots 

r,+r,= -(l+plz(l-2a))//Ma 

is also negative. In fact, rl + r2 might be positive for large values of the CFL num- 
ber ,4 (2 > l/(p(2a - 1))) when a > l/2: as we expect stability to be achieved for all 
CFL numbers between ,? = 0 and a certain limit, we keep the sign of r1 + r2 
corresponding to the lower CFL number, i.e., r1 + r2 < 0. As a consequence, if ri 
designates the negative root of the characteristic equation then rl < 0 < r2 and 
lrll > Ir21. 

The constants k, and k, may now be determined by imposing the conditions 
(A7) and (A9) on the general solution (AlO). This yields 

forM--l<i<N+l. (All) 
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It is now possible to determine $L- 1 and si/h by making use of Eqs. (A2), (AS), 
and (All): 

(Al2) 

(A13) 

It is then a simple matter to verify that $L is negative and that +h _ 1 and a have 
opposite signs. The only way to avoid such negative values (corresponding to a 
negative solution U’) consists of choosing CI = 0. 

In that particular case I1/$P1=O and $a = --J-/2( 1 + /?A). Since 
Ug = t/f, + UO, = II/:, + 1 must be positive, the maximum CFL number is given by 

IL 6 2/( 1 - 2P). 

APPENDIX B 

We now consider as initial conditions those corresponding to a propagating 
shock and write system (8) after the first time step: 

I):,=0 (Bl) 

-~1~(1-~)l#~,+(1+p~(l-2a)))$;+~~a~~+1=0 for l<i<M--2 ( 

-~/1(1-~)~:,_2+(1+p;1(1-2co)~~1-1 =J.a/2 WI 

-pn(l-a)lClt-1+~~=~tl-a)i2 (B4) 

(I;=0 forM+l<i<N+l. WI 

We again consider an associated sequence di delined by 

Clearly the two sequences $: and dj coincide for 0 d id M - 1. Now $M may be 
determined by writing Eq. (B6) for i = M- 1 and making use of Eq. (B3). This 
leads to 

cjM = - l/2/3. (B9) 
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The general solution of 
easily cast in the form 

POINSOTAND CANDEL 

Eq. (B6) satisfying the conditions (B7) and (B9) is then 

where rl, r2 are the roots of the characateristic equation c r2 + b r - a = 0. These 
two roots have opposite signs and if rl designates the negative root r1 < 0 then 
lrll > jr*I. In these circumstances dj is an alternating sequence and this is also the 
case for $xi, 16 i 6 M- 2. An oscillation is generated behind the shock. This 
oscillation only vanishes when CI = 0. In this case, corresponding to upwind differen- 
cing, Eqs. (B2) and (B3) give 

I/Y,‘=0 for l<i<M-1 

while $j,,, obtained from (B4) becomes 

I+b:, = k/2. @lOI 

To avoid an overshoot at the shock, tjh d 1 and as a consequence the CFL number 
A should be bounded by 2. 
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